Table of Contents

Teorie chyb

« 20. Kritéria pro testování opakovaných měření

21. Testování střední chyby (variance)

Úvod

Častým využitím statistického testování měření je případ, kdy je třeba zjistit, zda střední chyba měření odpovídá střední chybě předpokládané (např. použité pro rozbor přesnosti před měřením), případně také zjištění, zda různá měření konaná stejnými přístroji a metodami vykazují stejnou přesnost.

Tabulky k jednotlivým rozdělením lze nalézt v odborné literatuře nebo v [1].

Testování hypotézy o shodnosti výběrové a základní střední chyby

Testujeme hypotézu, že náhodný výběr s výběrovou střední chybou $m$ je proveden se základního souboru se střední chybou $\sigma $. Nulová hypotéza $H_0$: $m=\sigma $. Podle formulace úlohy se používá buď jednostranný, nebo oboustranný test. Testovacím kritériem bude veličina

$${\chi }^2=\frac{n-1}{{\sigma }^2}\cdot m^2, m=\sqrt{\frac{\left[vv\right]}{n-1}} ,$$

která má ${\chi }^2$-rozdělení s ($n-1$) stupni volnosti. Pro hladinu významnosti $\alpha $ najdeme z tabulek ${\chi }^2$-rozdělení kritické hodnoty:

Nulovou hypotézu budeme zamítat, pokud:

Testování hypotézy o shodnosti dvou výběrových směrodatných odchylek

Testujeme hypotézu, že dva výběrové rozptyly $m^2_1$ a $m^2_2$ ze dvou výběrů o rozsahu $n_1$ a $n_2$ odpovídají výběrům ze dvou základních souborů, pro které platí rovnost základních středních chyb, tedy ${\sigma }_1={\sigma }_2$. Test se většinou používá jako oboustranný. Testovacím kritériem bude veličina

$$F{\rm =}\frac{m^{{\rm 2}}_{{\rm 1}}}{m^{{\rm 2}}_{{\rm 2}}} ,$$

kde $m_{{\rm 1}}{\rm =}\sqrt{\frac{{\left[vv\right]}_{{\rm 1}}}{n_{{\rm 1}}{\rm -1}}}$, $m_{{\rm 2}}{\rm =}\sqrt{\frac{{\left[vv\right]}_{{\rm 2}}}{n_{{\rm 2}}{\rm -1}}}$,

která má $F$-rozdělení s $n'_1=n_1-1$ a $n'_2=n_2-1$ stupni volnosti. Ve vzorci volíme vždy $m^2_1>m^2_2$. Z tabulek $F$-rozdělení najdeme pro zvolenou hladinu významnosti kritickou hodnotu $F_{\alpha /2}$ na pravé straně grafu rozdělení. Nulovou hypotézu budeme zamítat při $F>F_{\frac{\alpha }{2}}$.

Mezní výběrová směrodatná odchylka

Výběrovou směrodatnou odchylku $s$ je možné také testovat pomocí testovacího kritéria

$$\tau =\frac{s}{\sigma }.$$

Pokud $\tau >{\tau }_{\alpha }$, výběrová směrodatná odchylka neodpovídá odchylce základní na hladině významnosti a. Jedná se o analogii k testu $\chi$${}^{2}$.

Testování výběrové směrodatné odchylky pomocí normálního rozdělení

Chyba ve výběrové směrodatné odchylce ($\sigma -s$) vzniká náhodnou kompozicí $n$ skutečných chyb, při jejich větším počtu bude její rozdělení blízké normálnímu s parametry $E(s)=\sigma $ a ${\sigma }_s=\sigma /\sqrt{2\cdot n'}$. ${\sigma }_s$ je tzv. směrodatná odchylka směrodatné odchylky. Mezní směrodatná odchylka je pak dána vzorcem

$${\sigma }_{\alpha }=\sigma +t_{\alpha }\cdot {\sigma }_s .$$

Jedná se o jednostranný test. Test je vhodné použít pro vyšší počet nadbytečných měření, nehodí se např. pro testování měření ve třech skupinách apod.


[1] Štroner, M. - Hampacher, M.: Zpracování a analýza měření v inženýrské geodézii. 1. vyd. Praha: CTU Publishing House, 2011. 313 s. ISBN 978-80-01-04900-6.

« 20. Kritéria pro testování opakovaných měření